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Abstract The corepresentation theory of continuous groups is presented without the as-
sumption that the subgroup G of the group with antilinear operations is unitary. Continuous
groups of the form: G+a0G are defined, where G denotes a linear Lie group and a0 denotes
an antilinear operation which fulfils the condition a2

0 = ±1. The matrix algebras connected
with the groups G + a0G are defined. The structural constants of these algebras fulfill the
conditions following from the Jacobi identities. Applications are presented to the groups
G = SU(d), d = 1,2, . . . , for a0 = K , the complex conjugation operation, and to the group
SL(2,C) for a0 = K or �, the time-reversal operation.

Keywords Continuous groups · Antilinear operations · Corepresentations · Lie groups and
algebras

1 Introduction

The theory of corepresentations of non-unitary groups G = G+a0G, where G denotes a uni-
tary group and a0 is an antiunitary element, was formulated by Wigner [32], to whom belong
the first applications of corepresentations in quantum mechanics. Space groups with antiu-
nitary operations and their corepresentations subsequently found important applications in
solid state physics.

Wigner’s theory of corepresentations was elaborated by a number of authors to the form
of a powerful tool for investigations of physical properties of crystals and of magnetic crys-
tals [1, 2, 4, 6, 28, 29]. It was applied in the investigations of symmetry changes at commen-
surate and incommensurate continuous magnetic phase transitions [11–13, 20], and to the
problem of magnetocrystalline anisotropy of ferromagnetic crystals [14].
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It was shown by Birman [2] that a non-unitary symmetry group can intervene in the clas-
sical description of a crystal in a state of thermodynamic equilibrium. The non-unitary group
of the type G + KG, where G is a space group, and where K denotes the operation of com-
plex conjugation, constitutes the complete symmetry group of the crystal-lattice dynamic
problem. This group plays the basic role in establishing the one-to-one correspondence be-
tween vibration frequencies and irreducible corepresentations (coirreps). The application of
the non-unitary group G+KG to a description of lattice vibrations elaborated in [2], opened
the way for a further development in this field, made by Kovalev [23–28] and by Kovalev
and Gorbanyuk [29]. These authors formulated another method of demonstrating that there
exists the one-to-one correspondence between coirreps and frequencies of crystal lattice
vibrations. As a subsequent step in the exploration of the importance of the non-unitary
groups, Kovalev and Gorbanyuk [29], generalized Wigner-Eckart theorem [31] to systems
described by magnetic space groups (see [15, 16]).

The corepresentation theory was originally formulated for the case when the subgroup
G of the group G + a0G is unitary [32]. The group G + a0G then is called a non-unitary
group [4], and the element a0 is an antiunitary operation. The name antiunitary, which was
assigned to the antilinear operations of complex conjugation and of time reversal draws from
the fact that when the bilinear product of basis functions is Hermitian, any antiunitary op-
eration is equal to the product of the operation of complex conjugation with some unitary
operation [32]. The name antiunitary does not seem to be appropriate when those operations
are applied to linear operations which are not unitary, for example to the operations of the
group SL(2,C). The modification of group representation theory leading to corepresenta-
tions is conditioned by the antilinear character of the operations of complex conjugation or
time reversal.

In Sect. 2 we will present the theory of corepresentations without making the assumption
that the subgroup G of the group G + a0G is unitary. The formulas of the corepresentation
theory with unitary groups G can be obtained from this presentation. Groups of the type
G = G + a0G will be considered, consisting of the subgroup G which is a group of linear
operations and of the coset a0G, consisting of products of an antilinear operation a0 with
the linear operations belonging to G. The element a0 itself, in general can be a product of
an antilinear operation A with a linear operation g0

L, which does not belong to the subgroup
G. However, the element g0

L has to be of such a type that we have (Ag0
L)2 ∈ G. In particular

we can have g0
L equal to the unit element 1.

An attempt at an extension of Wigner’s investigations of continuous groups with anti-
linear operations will be presented in Sect. 3. For a certain type of continuous groups with
antilinear operations, matrix algebras with the commutator product will be defined. This
will be done for continuous groups G + a0G, in which G is a linear Lie group, which need
not be unitary, and the antilinear element a0 fulfills the condition a2

0 = ±1. The matrix al-
gebras connected with the thus specified groups G + a0G can be defined in a way which is
analogous to that for linear Lie groups. The parametrization of the groups G + a0G where
G is a linear Lie group requires carefull attention. We will accept the following solution of
this problem: When a linear Lie group G depends on n essential parameters the coset a0G

depends on n+ 1 essential parameters—the n parameters of the Lie group and an additional
parameter which in general is required for completing the matrix algebra. The required basis
element of the matrix algebra is connected with the antilinear element a0. The matrix alge-
bras of the groups SU(d)+KSU(d), d = 1,2, . . . , and of the groups SL(2,C)+a0SL(2,C),
where a0 is the complex conjugation operation or the time-reversal operation, will be cal-
culated in Sects. 4, 5, 6 and 7. A part of the results contained in this paper was presented
in [21, 22].
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2 The Corepresentation Theory of Continuous Groups

In this section we are indebted to the presentations of the corepresentation theory for mag-
netic space groups by Bradley and Cracknell [4], and Kovalev and Gorbanyuk [29].

In the applications of corepresentation theory in quantum mechanics [32], the antiunitary
element a0 was the time-reversal operation, multiplied by a proper or improper rotation
element, represented by a unitary matrix. When the subgroup G need not be unitary, it
seems to be misleading to call the group G + a0G a non-unitary group, and we will not use
this name.

Let G be a continuous group of linear transformations which need not be unitary. We
define the group

G = G + a0G (1)

in which in general the operation a0 is a product of an antilinear operation with a linear
operation, which does not belong to the subgroup G. As the product of any two elements of
the coset a0G has to belong to G, we must have a2

0 ∈ G.
Let � be an irreducible representation (irrep) of the group G, of dimension d , and let

ϕi, i = 1, . . . , d , be its basis functions. For any element g ∈ G, we then have

gϕi =
d∑

j=1

�(g)jiϕj or gϕ = �̃(g)ϕ (2)

where �(g) is the representation matrix, ϕ is the column matrix constructed from the basis
functions ϕ1, . . . , ϕd , and �̃(g) is the transposed matrix. The action of an antilinear opera-
tion a0 on a linear combination of functions ϕi is defined by

a0

d∑

i=1

ciϕi =
d∑

i=1

c∗
i a0ϕi (3)

where ci are complex numbers, and ∗ denotes complex conjugation.
The action of the antilinear element a0 on the basis functions ϕi leads to another set of

functions φi ,

a0ϕi = φi; i = 1, . . . , d (4)

We consider this transformation as an endomorphism of the space which is spanned by the
functions ϕi (see in this respect Chap. V in [3]). The column matrix constructed from the
functions φi , i = 1,2, . . . , d will be denoted by φ. The action of g ∈ G on φ is given by

gφ = ga0ϕ = a0(a
−1
0 ga0)ϕ = a0�̃(a−1

0 ga0)ϕ = �̃∗(a−1
0 ga0)φ (5)

where the last equality is connected with the antilinear character of a0. From (2) and (5) we
obtain

g

(
ϕ

φ

)
=

(
�̃(g) 0

0 �̃∗(a−1
0 ga0)

)(
ϕ

φ

)
; ∀g ∈ G (6)

We now define the matrix �(g) in the representation �, by

�(g) = �∗(a−1
0 ga0); �(g) ∈ � (7)



Int J Theor Phys (2010) 49: 1524–1548 1527

where �(g) is a matrix representative of g ∈ G, in the representation � of G. This equation
defines the representation � of G.

Let a be any element of a0G, say, a0g. We then obtain

aϕ = a0gϕ = a0�̃(g)ϕ = �̃∗(g)φ = �̃∗(a−1
0 a)φ (8)

where (2) and (4) and the antilinear character of a0 have been used. We next obtain

aφ = aa0ϕ = �̃(aa0)ϕ (9)

owing to aa0 ∈ G. From (8) and (9) we obtain the expression

a

(
ϕ

φ

)
=

(
0 �̃∗(a−1

0 a)

�̃(aa0) 0

)(
ϕ

φ

)
(10)

If a = ga0, and g = aa−1
0 , the same formula is obtained, since we have

aϕ = (ga0)ϕ = �̃∗(a−1
0 ga0)φ = �̃∗(a−1

0 a)φ

and

aφ = aa0ϕ = �̃(aa0)ϕ

which are (8) and (9), respectively. Equations (6) and (10) demonstrate the invariance of the
space spanned by the functions ϕi and φi , i = 1, . . . , d , under the group G . From (6) and
(10) we obtain the matrices

D(g) =
(

�(g) 0

0 �∗(a−1
0 ga0)

)
; ∀g ∈ G (11)

and

D(a) =
(

0 �(aa0)

�∗(a−1
0 a) 0

)
; a = a0g or a = ga0, ∀g ∈ G (12)

The sets of matrices in (11) and (12) form the corepresentation D� of the group G , derived
from the representation �, with the matrices �(g) of the subgroup G. This corepresentation
may be reducible. The corepresentation matrices obey the following set of equations [32]:

D(g1)D(g2) = D(g1g2); ∀g1, g2 ∈ G

D(g)D(a) = D(ga); ∀g ∈ G, and ∀a ∈ a0G

D(a)D∗(g) = D(ag); ∀g ∈ G, and ∀a ∈ a0G

D(a1)D
∗(a2) = D(a1a2); ∀a1, a2 ∈ a0G

(13)

These are established by examining the action of the respective products of elements g and a

on the basis functions, when the antilinear character of the elements a is taken into account.
Because of the last two equalities, the mapping G → D� is not a homomorphism.

It can be shown that there is no ambiguity in the assignment of the corepresentation D�,
derived from the representation �, to the group G . Different choices of a0 in the definition
of G lead to equivalent corepresentations [4, 32].
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2.1 The Equivalence of Two Corepresentations

Performing the basis transformation with a nonsingular transformation S,

S̃χ = χ ′, with χ̃ = (ϕ,φ) (14)

where ϕ and φ are given in (6), we obtain

gχ ′ = D̃′(g)χ ′, hence D′(g) = S−1D(g)S (15)

and

aχ ′ = D̃′(a)S̃χ, or aχ ′ = aS̃χ = S̃∗D̃(a)χ, hence D′(a) = S−1D(a)S∗ (16)

Two corepresentations of the group G , the corepresentation with the matrices D(g) and
D(a), and the corepresentation with the matrices D′(g) and D′(a), are said to be equivalent
if there exists a nonsingular matrix S such that

D′(g) = S−1D(g)S; ∀g ∈ G, (17)

D′(a) = S−1D(a)S∗; ∀a ∈ a0G (18)

We envisage the following similarity transformations of the corepresentation matrices:

S1 = e−iα0/2E, S2 = e−iα0/2

(
Ed 0

0 −Ed

)
, S3 = e−iα0/2

(
0 Ed

±Ed 0

)
(19)

which depend on a real parameter α0, where E is the unit matrix of an appropriate dimension
and Ed is the unit matrix of dimension d . These transformations preserve the block struc-
ture of the corepresentation matrices. The matrices D′(g) remain independent of the para-
meter α0 under these transformations, while the matrices D′(a) acquire the factor exp(iα0).
These transformations will be considered for the definition of the matrix algebras in Sect. 3.

2.2 Reducibility of Corepresentations

If the basis χ in (14) can be transformed by a nonsingular transformation S so that the new
basis χ ′ = S̃χ is the direct sum of two subspaces which are both invariant under the group G ,
the corep D� is said to be reducible. If not, D� is said to be irreducible. We observe that we
use the term reducible, as it is used in [4, 29, 32], in the sense of completely reducible [5],
or decomposable [2]. The two representations � and � may be inequivalent or equivalent.
The answer to the question about the reducibility of the corep in (11) and (12) hinges upon
that.

2.2.1 The Representations � and � are Inequivalent

If the irreps � and � are inequivalent, the corep of the group G derived from the irrep � is
irreducible. We are dealing with c-type irreducible corepresentation (type 3 in [32]), with
the matrices in (11) and (12). The respective proof for irreps � which need not be unitary is
analogous to that for unitary irreps � (for the later see [4]).
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2.2.2 The Representations � and � are Equivalent

There exists then a nonsingular matrix N (the matrix β in [32]) such that

�(g) = N�∗(a−1
0 ga0)N

−1, ∀g ∈ G (20)

Replacing the element g with a−1
0 ga0 we also obtain

�∗(a−1
0 ga0) = N∗�(a−2

0 ga2
0)(N

−1)∗ = N∗�(a−2
0 )�(g)�(a2

0)(N
−1)∗ (21)

Substituting the last expression into (20) we obtain the equation

�(g) = NN∗�−1(a2
0)�(g)�(a2

0)(N
−1)∗N−1, ∀g ∈ G (22)

Since � is irreducible, it follows from Schur’s Lemma that NN∗�−1(a2
0) = 
E where 
 is

a constant and E is the unit matrix. Hence we obtain:

�(a2
0) = 
−1NN∗, and �∗(a2

0) = (
∗)−1N∗N (23)

In (20) we can put g = a2
0 and we then obtain

�(a2
0) = N�∗(a2

0)N
−1 (24)

Substituting the right hand sides of (23) into (24), we obtain the equalities: 
−1NN∗ =
N(
∗)−1N∗NN−1 = (
∗)−1NN∗, and hence 
 = 
∗. Calculating the determinant of both
sides of (23) we obtain:


 = ±|detN detN∗|
|det�(a2

0)|
= ±1 (25)

when we assume that the irrep � consists of matrices with |det�(g) = 1|, and we remember
that the matrix N can always be chosen so as to have |detN detN∗| = 1. Consequently, from
(23) we obtain

NN∗ = ±�(a2
0) (26)

as in the case of unitary matrices N , as in [4, 13, 32]. The reducibility of a corep depends
on the sign in (26).

A corepresentation D� is reducible if and only if the matrices D(g) and D(a) can si-
multaneously be expressed in the same block-diagonal form. The matrices D(g) in (11) are
already in a reduced form, however, it will be convenient to convert them to the form, when
there are the same blocks along the diagonal. Applying the matrix

W =
(

E 0

0 −N−1

)
(27)

with N from (20), and D(a0) in (12), we obtain:

D′(g) = W−1D(g)W =
(

�(g) 0

0 �(g)

)
(28)
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and

D′(a0) = W−1D(a0)W
∗ =

(
0 −�(a2

0)(N
−1)∗

−N 0

)
(29)

Since every element of G is of the form g,a0g or ga0, for g ∈ G, while D′(a0g) =
D′(a0)D

′ ∗(g) and D′(ga0) = D′(g)D′(a0), a nonsingular transformation V is required,
which will reduce the matrices D′(a0) to block-diagonal form, leaving the matrices D′(g)

unaltered. That V must commute with D′(g) in (28). Writing:

V −1 =
(

α β

γ δ

)
(30)

from the equation V −1D′(g) = D′(g)V −1 we obtain:
(

α�(g) β�(g)

γ�(g) δ�(g)

)
=

(
�(g)α �(g)β

�(g)γ �(g)δ

)
(31)

As the matrices �(g) are irreducible, from Schur’s Lemma we find that α = λE, β = μE,
γ = νE and δ = ρE, with constant λ,μ, ν,ρ, where E is a d-dimensional unit matrix. We
therefore must have

V −1 =
(

λE μE

νE ρE

)
(32)

The required existence of V implies that detV −1 �= 0, which leads to

λρ �= μν (33)

We find that

V = 1

2

(
E/λ E/ν

E/μ E/ρ

)
(34)

with

λρ = −μν (35)

which is the condition for a reduction of a corep to be possible. It is the same as for unitary
irreps � of the group G. With D′(a0) in (29), the transformed matrix D′′(a0) has the form

D′′(a0)

= V −1D′(a0)V
∗

= 1

2

(−(μ/λ∗)N − (λ/μ∗)�(a2
0)(N

−1)∗ −(μ/ν∗)N − (λ/ρ∗)�(a2
0)(N

−1)∗

−(ρ/λ∗)N − (ν/μ∗)�(a2
0)(N

−1)∗ −(ρ/ν∗)N − (ν/ρ∗)�(a2
0)(N

−1)∗

)
(36)

As the off-diagonal terms have to vanish, and from (35), we obtain the condition:

NN∗ = |λ|2
|μ|2 �(a2

0) (37)

which has the form of (26) with (+) sign, provided that

|λ|2
|μ|2 = 1 (38)
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2.2.3 The Irreps � and � Are Equivalent and a Reduction of the Corepresentation in (11)
and (12) Is Possible

Considering (37) and (38) we find that a reduction of the corep in (11) and (12) is possible
when

NN∗ = +�(a2
0) (39)

Taking into account (35) and (37), we obtain from (36) the reduced matrix D′′(a0) in the
form

D′′(a0) =
(

(−μ/λ∗)N 0

0 (−ρ/ν∗)N

)
(40)

Owing to (35), the coefficients μ/λ∗ and ρ/ν∗, have the same absolute value and they can
differ only by a phase factor, and hence, according to (18), the two blocks along the diagonal
are equivalent. For a unitary N , the matrix in (40) turns into the customary matrix D′′(a0),
for example in Eq. (7.3.40) of [4], or in Eq. (1.5.40) of [13].

In order to determine the matrix connected with the element a = ga0 we use the second
from (13) and obtain D(a) = D(ga0) = D(g)D(a0), hence from (28) and (40) we obtain
the matrix

D′′(ga0) =
(−(μ/λ∗)�(g)N 0

0 −(ρ/ν∗)�(g)N

)
(41)

We observe that the reduced matrices in (28) and (41), with the two blocks in D′′(a) in the
same form, can be obtained by applying to corep matrices in (11) and (12) the transforma-
tion, which is analogous to that given by Kovalev and Gorbanyuk for unitary groups [29],
namely:

V1 = 1√
2

(
E iE

(λ/μ)N−1 −i(λ/μ)N−1

)
, V −1

1 = 1√
2

(
E (μ/λ)N

−iE i(μ/λ)N

)
(42)

Applying this transformation we obtain the corep matrices in the form:

D′(g) =
(

�(g) 0

0 �(g)

)
, D′(ga0) =

(
(μ/λ)�(g)N 0

0 (μ/λ)�(g)N

)
(43)

and

D′(a0g) =
(

(μ/λ)N�∗(g) 0

0 (μ/λ)N�∗(g)

)
(44)

With g = E, we obtain

D′(a0) =
(

(μ/λ)N 0

0 (μ/λ)N

)
(45)

which replaces (40), in which the two block matrices appear with opposite signs. When the
matrix N is unitary, and we put μ/λ = 1, the transformation V1 in (42) turns into Eq. (8.11a)
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in [29], or into Eq. (1.5.43) in [13]. In general we have μ/λ = exp(iξ), with a real ξ . Re-
naming the functions φi in (4) of the original corepresentation,

φi = a0ϕi = ϕd+i , i = 1, . . . , d (46)

and utilizing the transformation V1 in (42), we obtain the basis functions of the two blocks,
with labels (1) and (2),

ψ
(1)
j = 1√

2

(
ϕj + λ

μ

d∑

i=1

(Ñ−1)jiϕd+i

)
, ψ

(2)
j = i√

2

(
ϕj − λ

μ

d∑

i=1

(Ñ−1)jiϕd+i

)
(47)

In the case of unitary groups G, when the original basis functions ϕj in (2) are orthogo-
nal, the basis functions ψ

(1)
j , j = 1, . . . , d , also are orthogonal, and the same holds for the

functions ψ
(2)
j . These two sets of functions need not be mutually orthogonal, however.

2.2.4 The Irreps � and � Are Equivalent, However a Reduction of the Corepresentation
in (11) and (12) Is Impossible

According to (26) with the (−) sign, we now have:

NN∗ = −�(a2
0) (48)

and from (29) we obtain

D′(a0) =
(

0 N

−N 0

)
(49)

With a = ga0, hence g = aa−1
0 , and D′(a) = D′(g)D′(a0), with D′(g) in (28) and D′(a0) in

(49), we obtain

D′(ga0) =
(

0 �(g)N

−�(g)N 0

)
(50)

With a = a0g, hence g = a−1
0 a, from the third of (13) and from (49) we obtain the matrix

D′(a0g) = D′(a0)D
′∗(g) =

(
0 N�∗(g)

−N�∗(g) 0

)
(51)

We observe that (28), (50) and (51) can be obtained by applying to the corep matrices in
(11) and (12) the transformation:

V2 =
(

iE 0

0 iN−1

)
(52)

When the matrix N is unitary, V2 turns into the transformation given by Kovalev and Gor-
banyuk in Eq. (8.10) of [29], (or Eq. (1.5.50) of [13]).



Int J Theor Phys (2010) 49: 1524–1548 1533

The basis functions transforming according to the matrices in (28), (50) and (51) are
determined from the equality,

Ṽ2

(
ϕ

φ

)
=

(
iϕ

iÑ−1φ

)
=

⎛

⎜⎝
ψ1

...

ψ2d

⎞

⎟⎠ (53)

with φi in (46) or,

ψj = iϕj , j = 1, . . . , d

ψd+j = i

d∑

k=1

(Ñ−1)jkϕd+k, j = 1, . . . , d, with ϕd+k = a0ϕk (54)

The corepresentation formulas hold for single-valued as well as for double-valued represen-
tations � of the subgroup G.

3 Continuous Groups with Antilinear Operations

Wigner [32] considered continuous groups with antilinear operations G + a0G, where the
group G is unitary and a2

0 ∈ G. In the following definition, the group G will be a linear Lie
group which need not be unitary, and a2

0 = ±1.

Definition 3.1 A type of continuous groups with antilinear operations has the form G +
a0G, where G is a linear Lie group and a0 is an antilinear operation which fulfils the condi-
tion a2

0 = ±1.

Before formulating the conditions which any group G + a0G defined above has to fulfill,
we firstly will discuss the problem of the parametrization of the coirreps of that group, and
next the problem of the matrix algebra with the commutator product, connected with the
above defined group. In the following the name “Lie group” is used in the sense of “linear
Lie group”.

Observation 3.1 From (11) and (12) it is seen that the matrices D(g) and D(a) of the
corepresentation D�, depend on n essential parameters α1, . . . , αn of the subgroup G. How-
ever, for completing the basis of the algebra connected with the group G + a0G, with the
commutator product, the basis element connected with the antilinear element a0 can be re-
quired. That basis element can be determined when the corepresentation matrices of the
coset a0G depend on an additional parameter. Such a parameter can be introduced owing
to the form of the equivalence condition of two corepresentations in (17) and (18). The ma-
trices D′(a) then depend on the n essential parameters of the group G and on the parameter
α0. Consequently, the coirrep D� depends on n independent parameters α1, . . . , αn of the
linear Lie group G, and on the additional parameter α0, which appears only in the matrices
of the coset a0G. We will apply the transformation S1 in (19).

It seems that the necessity of introducing the additional parameter is connected with
the existence of two convergence points in the groups G + a0G. In Lie groups, when the
essential parameters approach zero values, the representation matrices converge to the unit
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matrix. In G+a0G groups there are two points of convergence: the unit matrix E for the Lie
group G matrices, and the matrix D(a0) for the matrices of the coset a0G. In other words,
while the local properties of a Lie group G are connected with a small vicinity of the identity
transformation, the local properties of the group G + a0G are connected with the vicinities
of two transformations: the identity transformation and the transformation connected with
the antilinear element a0.

Depending on the particular group G+a0G, the basis element X′
0 connected with the ma-

trix eiα0 D(a0) either commutes or it does not commute with the remaining basis elements of
the respective algebra. The question can therefore be posed whether it is legitimate to retain
the parameter α0, with which X′

0 is connected, when the algebra is complete without X′
0.

Two answers of this question can be considered: (1) The presence of an additional parame-
ter in the coset a0G corepresentation matrices is implied by the necessity of completing the
algebra. When it turns out that the algebra is complete without the basis element X′

0, there
is no need for an additional parameter. There is then no basis element of the algebra which
is connected with the antilinear operation a0. (2) Any corepresentation can be transformed
to the form with the matrices of the coset a0G depending on the additional parameter. This
parameter leads to the basis element X′

0, of the matrix algebra which is connected with the
antilinear operation a0.

If we accepted the first answer, semi-simple algebras for the Lie group G could turn into
semi-simple algebras for G + a0G. The acceptance of the second answer implies that when
X′

0 commutes with all the remaining basis elements, semi-simple algebras of the Lie group
G do not turn into semi-simple algebras of the group G + a0G. In the following we will
accept α0 as an essential parameter of the coirrep connected with the group G + a0G, also
in the case when X′

0 is not required for completing the basis of the matrix algebra. This
means that we accept the second standpoint.

Considering Observation 3.1 we introduce the following four conditions which have to be
fulfilled by any continuous group with antilinear operations, in the sense of Definition 3.1.

(I) The group G + a0G must have at least one faithful finite-dimensional irreducible
corepresentation D� of type (a) or (b), of dimension (n + 1), i.e. with (n + 1) es-
sential parameters α0, α1, . . . , αn.

Let the dimension of the irrep matrices � of the subgroup G be d . The dimension
of the coirrep D� is d or 2d , for a-type or b-type coirreps, respectively.

We define the distance function denoted by d1(g, g′) between the elements g

and g′ of G, and the distance function d2(a, a′) between the elements a and a′ of
the coset a0G,

d1(g, g′) = +
[

m∑

j=1

m∑

k=1

|D(g)jk − D(g′)jk|2
]1/2

d2(a, a′) = +
[

m∑

j=1

m∑

k=1

|D(a)jk − D(a′)jk|2
]1/2

(55)

where m = d , for a-type coirreps, and m = 2d , for b-type coirreps. The parameter α0

does not appear in the distance function d2(a, a′). These distance functions fulfill the
following five conditions:

(1) d1(g, g′) = d1(g
′, g), d2(a, a′) = d2(a

′, a)

(2) d1(g, g) = 0, d2(a, a) = 0
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(3) d1(g, g′) > 0, if g �= g′ and d2(a, a)′ > 0 if a �= a′

(4) d1(g, g′′) ≤ d1(g, g′) + d1(g
′, g′′) and d2(a, a′′) ≤ d2(a, a′) + d2(a

′, a′′)

for any three elements of G or of a0G. (56)

The two sets of elements g of G and a of a0G which fulfill the conditions

d1(g,1) < δ1, and d2(a, a0) < δ2 (57)

respectively, where δ1 and δ2 are real positive numbers, are said to be within the sphere
of radius δ1 centered on the unit element 1, and to be within the sphere of radius δ2

centered on the element a0, respectively. We are dealing with two small neighbour-
hoods of 1 and of a0, respectively. The parameters α1, . . . , αn, on which depend the
matrices D(g), representing the Lie subgroup G, are assigned to an n-dimensional
Euclidean space Rn, and the parameters α0, α1, . . . , αn, on which depend the matrices
eiα0D(a), representing the coset a0G, are assigned to an (n + 1)-dimensional Euclid-
ean space R(n+1).

(II) We fix a δ1 > 0 in Rn, and we consider elements g of G lying in the sphere of radius δ1

centered on the unit element 1. At the same time we fix a δ2 > 0 in R(n+1), and consider
elements a of a0G, lying in the sphere of radius δ2 which is centered on the element
a0. The elements g ∈ G within the sphere of radius δ1 are uniquely parametrized by
n real parameters α1, . . . , αn, and the elements a ∈ a0G are uniquely parametrized by
the parameters α0, α1, . . . , αn, when α0 and α0 + 2πp, p = ±1,2, . . . , are identified.
The matrix E, representing the unit element 1, and the matrix eiα0D(a0), representing
the antilinear element a0 are connected with α1 = · · · = αn = 0.

(III) There has to exist such ε1 > 0, that to every point in Rn for which

n∑

j=1

α2
j < ε2

1 (58)

there corresponds some element g, and there has to exist such ε2 > 0, that to every
point in R(n+1) for which

n∑

j=1

α2
j < ε2

2 , with a fixed α0 (59)

there corresponds some element a = a0g. There is a one-to-one correspondence be-
tween elements g of G, and points in Rn, as well as between elements a of a0G and
points in R(n+1), (provided that α0 is identified with α0 +2πp,p = 1,2, . . .), satisfying
the respective condition in (58) or (59).

(IV) Each of the matrix elements of the coirrep D�(α0, α1, . . . , αn) must be an analytic
function of the parameters (α1, . . . , αn) for the subgroup G, and of these parameters
together with the parameter α0 for the coset a0G. These parameters have to satisfy the
respective conditions in (58) and (59) This means that for the subgroup G, each of the
matrix elements Djk can be expressed as a power series in α1 −α0

1, . . . , αn −α0
n, for all

(α0
1, . . . , α

0
n) fulfilling the condition in (58), and for the coset a0G, each of the matrix

elements exp(iα0)Djk can be expressed as a power series in α0 − α0
0, α1 − α0

1, . . . ,

αn − α0
n, for all α0

0, α
0
1, . . . , α

0
n fulfilling the condition in (59).
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Consequently, all the derivatives: ∂Djk/∂αp , ∂2Djk/∂αp∂αq, . . . , for the subgroup, and
∂exp(iα0)Djk/∂αp , ∂2exp(iα0)Djk/∂αp∂αq, . . . , for the coset, have to exist at all points
which fulfill (58), and (59), including the points α1 = · · · = αn = 0, and α0 = α1 = · · · =
αn = 0 for the subgroup and for the coset, respectively. For a-type coirreps, we have p,q =
1, . . . , n and j, k = 1, . . . , d, for the subgroup, and p,q = 0,1, . . . , n, for the coset, and
for b-type coirreps we have p,q = 1, . . . , n; j, k = 1, . . . ,2d, for the subgroup, and p,q =
0,1, . . . , n; j, k = 1, . . . ,2d , for the coset.

Observation 3.2 The definitions of this Section are valid for the “unprimed” form of the
corepresentation matrices in (11) and (12), with the factor exp(iα0) in front of the D(a0g)

matrices, as well as for the “primed” form of the corepresentation matrices obtained with
the help of the transformations in (42) and (52). The “prime” label of the corepresentation
matrices D has therefore been omitted in points I, II and IV and it will be omitted further on
in this section.

Definition 3.2 The connected component of the group G + a0G, is the maximal set of
elements g or a which can be obtained from each other by continuously varying one or more
of the respective matrix elements D(g)jk or eiα0D(a)jk of the faithful finite-dimensional
coirrep D�.

For both types of coirreps, a and b, there holds the equivalence condition in (20), from
which we obtain the equality:

N�∗(g′) = �(g)N (60)

where g′ ∈ G, and for a0 = K we have g′ = g∗, and for a0 = �, g′ = �−1g�.
For a-type coireps, when a0 = K , from (60) we obtain: N�(g) = �(g)N , and hence

from Schur’s lemma we can put N = E, with E denoting the unit matrix. The matrices
D′(g), D′(Kg) and D′(gK) reduce to single blocks, which are �(g), exp(iα0)�

∗(g), and
exp(iα0)�(g), respectively. These can be transformed into one another by a continuous
variation of one or more of the essential parameters. If the Lie group G is connected, the
group G + a0G also is connected. When a0 �= K and N �= E, we obtain two different ma-
trices representing group elements: �(g) and exp(iα)�(g)N . We cannot obtain �(g) from
�(g)N , by a continuous variation of one or more of the essential parameters. When the es-
sential parameters approach zero value, the above two matrices converge to E and to N �= E,
respectively. The group G + a0G then is not connected.

For b-type coirreps, the matrices of the coset a0G due to their form cannot be transformed
into the matrices of the subgroup G by a continuous variation of one or more of the essential
parameters. When the essential parameters α0, α1, . . . , αn approach zero values, the matrices
D(g) converge to the unit matrix E, and the matrices eiα0D(a0g) and eiα0D(ga0) to the
matrix D(a0) in (49). According to Definition 3.2, for b-type coirreps the groups G + a0G

are not connected.

Definition 3.3 For a-type coirreps we define the d-dimensional matrices X1, . . . ,Xn, con-
nected with the subgroup G, and the d-dimensional matrices X′

n+1, . . . ,X
′
2n and X′

0, con-
nected with the coset a0G, by their elements

(Xp)jk =
(

∂D(g)jk

∂αp

)

α1=···=αn=0

; p = 1, . . . , n (61)
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(X′
q)jk =

(
∂eiα0D(a0g)jk

∂αq

)

α0=α1=···=αn=0

; q = 0,1, . . . , n (62)

where D(g)jk and eiα0D(a0g)jk, j, k = 1, . . . , d denote the elements of the respective coir-
rep matrices.

Corollary 3.1 For a-type coirreps, when all the matrices X′
q , q = 1, . . . , n, are linearly

dependent on the matrices Xp , p = 1, . . . , n,, the (n + 1) matrices X′
0,X1, . . . ,Xn span an

(n + 1)-dimensional vector basis.

Proof The proof is analogous to that for Lie groups in [5]. �

Definition 3.4 For b-type coirreps, the 2d-dimensional matrices X1, . . . ,Xn, X′
n+1, . . . ,X

′
2n,

and X′
0 are defined by their elements

(Xp)jk =
(

∂D(g)jk

∂αp

)

α1=α2=···=αn=0

; p = 1, . . . , n (63)

(X′
q)jk =

(
∂eiα0D(a0g)jk

∂αq

)

α0=α1=···=αn=0

; q = 0,1, . . . , n (64)

where eiα0D(a0g)jk , j, k = 1,2, . . . ,2d , denote the elements of the coirrep matrices of the
coset a0G, and where the matrices D(a0g) do not depend on the parameter α0.

Corollary 3.2 For b-type coirreps, the matrices X1, . . . ,Xn,X
′
n+1, . . . ,X

′
2n, and X′

0 defined
by (63) and (64) span a (2n + 1)-dimensional real vector space.

Proof Because of their form, the matrices X′
(n+1), . . . ,X

′
(2n), X′

0, connected with the ele-
ments a in a0G, always are linearly independent of the matrices X1, . . . ,Xn, connected
with the subgroup G. We know that the matrices X1, . . . ,Xn, are linearly independent [5].
It suffices to demonstrate the linear independence of the (n+1) matrices X′

0,X
′
n+1, . . . ,X

′
2n,

connected with the coset a0G. We have to show that the only solution of the equation

(
2n∑

j=n+1

λjX
′
j

)
+ λ0X

′
0 = 0, with all λ′s real (65)

is λn+1 = λn+2 = · · · = λ2n = λ0 = 0. The respective proof is analogous to that in [5, 7], for
a Lie group G. �

Conjecture 3.1 In a complex algebra, the matrices X1, . . . ,Xn,X
′
0, span an (n + 1)-

dimensional vector space.

Definition 3.5 For the matrices X1, . . . ,Xn,X
′
n+1, . . . ,X

′
2n, and X′

0, we define the commu-
tator products [A,B] = AB − BA.

For the Lie group G we have:

[Xp,Xq] =
n∑

r=1

c r
pq Xr, p, q, r = 1, . . . , n (66)
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where c r
pq are the structural constants. For the remaining commutator products we intro-

duce.

Definition 3.6 The commutator of two basis vectors connected with the coset a0G is equal
to a linear combination of basis vectors connected with the subgroup G in [5, 10]

[X′
p, X′

q ] =
n∑

r=1

d
r

pqXr, p, q = 0, n + 1, . . . ,2n; r = 1, . . . , n (67)

and the commutator of a basis vector Xp , connected with the subgroup G, with a basis
vector X′

q , connected with the coset a0G, is equal to a linear combination of basis vectors
connected with that coset,

[Xp,X′
q ] =

∑

r

e r
pqX

′
r , p = 1, . . . , n; q = 0, n + 1, . . . ,2n; r = 0, n + 1, . . . ,2n (68)

where the structural constants d
r

pq and e r
pq are antisymmetric with respect to the interchange

of the indices p and q .

The definitions in (66), (67) and (68) establish a correspondence between the results of
products of elements in the group G + a0G, and the results of the respective commutator
products of the basis elements of the matrix algebra.

Corollary 3.3 From the Jacobi identity for the double commutator [[Xp,Xq ],Xr ], in
Lie algebras we obtain the known relation between the structural constants c r

pq in (66).
From the three Jacobi identities connected with the double commutators: [[Xp,Xq ],X′

r ],[[Xp,X′
q ],X′

r ] and [[X′
p,X′

q],X′
r ], we obtain on the basis of (66), (67) and (68) the respec-

tive three relations between the structural constants c s
pq , d

s

pq and e s
pq :

c s
pqe

t
sr − e s

qre
t
ps + e s

pre
t
qs = 0

e s
pqd

t

sr + d
s

qrc
t
sp − e s

prd
t

sq = 0

d
s

pqe
t
sr + d

s

qre
t
sp + d

s

rpe t
sq = 0 (69)

4 The Groups SU(d) + KSU(d)

We will apply the above presented theory to the unitary groups SU(d), d = 1,2, . . . , consid-
ering the groups SU(d)+KSU(d), where K denotes the operation of complex conjugation.
We denote the matrices of the group SU(d) by �(g). The group element g(α1, . . . , αn), of
which �(g) is the matrix representation is written in the form,

g(α1, . . . , αn) = exp

(
i

n∑

j=1

λjαj

)
(70)

where λj are real or imaginary symbols which fulfil the same commutation relations as the
matrices representing them in the representation SU(d), and αj are real parameters. We have

Kg(α1, . . . , αn) = g∗ = exp

(
−i

n∑

j=1

λ∗
jαj

)
(71)
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We consider the matrix �(g) in (7), with a0 = K , and we find that

�(g) = �∗(K−1gK) = �∗(g∗K2) = �(g) (72)

since K2 = 1. The matrix N in (20), has the form

N = E (73)

where E is a d-dimensional unit matrix. The reducibility condition: NN∗ = +�(a2
0)

is fulfilled, since �(K2) = E and N = E. Consequently, the coirreps of the groups
SU(d) + KSU(d) all are of a-type. The coirrep matrices are given in (43) and (44). The
equivalence conditions of two coirreps in (17) and (18) allow for introducing the similarity
transformation S1 in (19) and hence the factor exp(iα0), with a real α0 appears in front of
the coset matrices D(a). Consequently, we obtain the a-type coirrep matrices for the groups
SU(d) + KSU(d), in the form

D′(g) = �(g), D′(gK) = eiα0�(g) D′(Kg) = eiα0�∗(g), D′(K) = eiα0E (74)

The matrices D′(g) depend on n parameters (α1, . . . , αn), and the matrices D′(Kg) and
D′(gK), depend on (n + 1) parameters (α0, α1, . . . , αn).

We consider the real algebra of matrices Xσ connected with the subgroup G, and of
matrices X′

ρ , connected with the coset a0G,

Xσ =
(

∂D(g)

∂ασ

)

α=0

, X′
ρ =

(
∂eiα0D(a)

∂αρ

)

α=0

(75)

where for Xσ we have α ≡ (α1, . . . , αn), and for X′
ρ we have α ≡ (α0, α1, . . . , αn). The

matrices X′
ρ , connected with the coset a0G, are linearly dependent on the matrices Xσ ,

except for the matrix X′
K , connected with α0. In a real algebra we are dealing with n+1 basis

elements. The algebra spanned by the matrices Xσ and X′
ρ differs from the algebra spanned

by the symbols λj only in the presence in it of the matrix X′
0 = iE, which commutes with

all the remaining matrices. In particular, the real algebra of SU(2) + KSU(2) is the same as
the algebra suL(2) ⊕ u(1) which appears in the unified theory of weak and electromagnetic
interactions [5].

The basis functions, which transform according to the coirrep in (43) and (44), are deter-
mined from (46) and (47), with N = E and λ/μ = 1, for unitary groups.

5 The Group SL(2,C) Expressed in Terms of Cayley-Klein Parameters

We express the proper orthochronous Lorentz group L
↑
+ in terms of the Cayley-Klein pa-

rameters as it was done in [30]. A four-vector x in the Minkowski space is written in the
form:

x = γ1x1 + γ2x2 + γ2x3 + γ4x4 = γμxμ (76)

with x4 = ict , and under the group L
↑
+ it is transformed according to the formula:

x′ = γμx ′
μ = S−1(γμxμ)S (77)
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where S and S−1 are biquaternion transformations. Defining:

γμν := γμγν = −γνμ (78)

we have

S = Aγ23 + Bγ31 + Cγ12 + D + iaγ14 + ibγ24 + icγ34 − idγ5 (79)

where A,B,C,D,a, b, c, d are Cayley-Klein real parameters, and γ5 = γ1γ2γ3γ4. The in-
verse transformation S−1 is obtained from S by reversing the signs of the parameters
A,B,C,a, b and c, which are called rotation parameters. We obtain SS−1 = S−1S = 1 on
two conditions:

A2 + B2 + C2 + D2 − a2 − b2 − c2 − d2 = 1, (80)

Aa + Bb + Cc + Dd = 0 (81)

which leave six independent Cayley-Klein rotation parameters, corresponding to the six
rotation planes in the Minkowski space. The elements ajk of the Lorentz matrix 
 in the
expression:

x ′
j = ajkxk (82)

are calculated from (77) and (79) in the form [18, 19]:

a11 = (D2 + A2 − B2 − C2) + (d2 + a2 − b2 − c2)

a22 = (D2 − A2 + B2 − C2) + (d2 − a2 + b2 − c2)

a33 = (D2 − A2 − B2 + C2) + (d2 − a2 − b2 + c2)

a44 = (D2 + A2 + B2 + C2) + (d2 + a2 + b2 + c2)

a12 = 2[(AB + CD) + (ab + cd)], a21 = 2[(AB − CD) + (ab − cd)]
a13 = 2[(AC − BD) + (ac − bd)], a31 = 2[(AC + BD) + (ac + bd)]
a23 = 2[(BC + AD) + (bc + ad)], a32 = 2[(BC − AD) + (bc − ad)]
a14 = 2i[(Da − Bc) − (Ad − Cb)], a41 = 2i[(Ad + Cb) − (Da + Bc)]
a24 = 2i[(Ac − Bd) − (Ca − Db)], a42 = 2i[(Ac + Bd) − (Ca + Db)]
a34 = 2i[(Ba − Cd) − (Ab − Dc)], a43 = 2i[(Ba + Cd) − (Ab + Dc)] (83)

We next consider the irrep

γ1 =

⎛

⎜⎜⎝

. . . −i

. . −i .

. i . .

i . . .

⎞

⎟⎟⎠ , γ2 =

⎛

⎜⎜⎝

. . . −1

. . 1 .

. 1 . .

−1 . . .

⎞

⎟⎟⎠ ,

γ3 =

⎛

⎜⎜⎝

. . −i .

. . . i

i . . .

. −i . .

⎞

⎟⎟⎠ , γ4 =

⎛

⎜⎜⎝

1 . . .

. 1 . .

. . −1 .

. . . −1

⎞

⎟⎟⎠

(84)
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which is obtained when γk = −iβαk, k = 1,2,3, and γ4 = β , where αk and β are the ma-
trices on page 368 of [8] or on page 121 of [9]. Applying to these matrices the unitary
transformation [17],

Y = 1

2

⎛

⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟⎟⎠ (85)

we obtain the following irrep matrices

γ1 =

⎛

⎜⎜⎝

. . i .

. . . −i

−i . . .

. i . .

⎞

⎟⎟⎠ , γ2 =

⎛

⎜⎜⎝

. . . −1

. . 1 .

. 1 . .

−1 . . .

⎞

⎟⎟⎠ ,

γ3 =

⎛

⎜⎜⎝

. . . i

. . i .

. −i . .

−i . . .

⎞

⎟⎟⎠ , γ4 =

⎛

⎜⎜⎝

. . 1 .

. . . 1

1 . . .

. 1 . .

⎞

⎟⎟⎠

(86)

With this irrep of the γ s, the transformation S in (79) takes the form:

S =
(

�1 0

0 �2

)
=

⎛

⎜⎜⎝

δ + iα −β + iγ 0 0
β + iγ δ − iα 0 0

0 0 δ∗ + iα∗ −β∗ + iγ ∗
0 0 β∗ + iγ ∗ δ∗ − iα∗

⎞

⎟⎟⎠ (87)

where

α = A + ia, β = B + ib, γ = C + ic, δ = D + id (88)

and where ∗ denotes a conjugate complex quantity.
In order to show that the matrices �1 and �2 constitute double-valued representations of

the group L
↑
+ we write the matrix form X of the four-vector x in (76),

X =

⎛

⎜⎜⎝

0 0 x4 + ix1 −x2 + ix3

0 0 x2 + ix3 x4 − ix1

x4 − ix1 x2 − ix3 0 0
−x2 − ix3 x4 + ix1 0 0

⎞

⎟⎟⎠ (89)

where we have used the matrix irrep for the γ s in (86). Denoting the two off-diagonal blocks
by X12 and X21, we can verify that the transformation

SXS† =
(

�1 0

0 �2

)(
0 X12

X21 0

)(
�

†
1 0

0 �
†
2

)
=

(
0 X′

12

X′
21 0

)
(90)

where �† denotes the Hermitian conjugate matrix of the matrix �, leads to the two-to-one
homomorphism of the matrices �1 or �2 onto the matrices 
 of the group L

↑
+. Each of

the matrices �1 or �2 in (87) constitutes the group SL(2,C). The transformation S in (79)
therefore determines the double-valued irrep SL(2,C) of the group L

↑
+.
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The action of the time-reversal operation on the Cayley-Klein parameters can be deter-
mined while considering the transformation to a new coordinate system x ′

i , i = 1, . . . ,4 with
the time-reversal matrix T :

T =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ (91)

and transforming to that reference system the Lorentz matrix 
 in (83),


′ = T 
T =

⎛

⎜⎜⎝

a11 a12 a13 −a14

a21 a22 a23 −a24

a31 a32 a33 −a34

−a41 −a42 −a43 a44

⎞

⎟⎟⎠ (92)

Comparing this expression for 
′ with 
 in (83), we find that the action of the time-reversal
operation, denoted by �, on the Cayley-Klein parameters is determined by:

�(A,B,C,D,a, b, c, d) = (A,B,C,D,−a,−b,−c,−d)� (93)

6 The Coirreps of the Groups SL(2,C) + a0SL(2,C)

We now return to the proper orthochronous Lorentz group constituted by the matrices 


determined in (83). The metric in the Minkowski space is the object of which L
↑
+ is the

invariance group. The continuous group L′ with antilinear operations is defined by:

L′ = L
↑
+ + a0L

↑
+ (94)

where a0 is equal to the time-reversal operation � or to the operation of complex conjuga-
tion K .

6.1 The Coirrep of the Group SL(2,C) + KSL(2,C)

We will consider the matrix �1 in (87). The following conclusions will also hold for
the matrix �2. We firstly have to answer the question whether the matrix �1(g) =
�∗

1(K
−1gK) is equivalent or inequivalent to the matrix �1(g). With �1(K

2) = E, we ob-
tain: �1(K

−1gK) = �1(g
∗K2) = �∗

1(g), with�∗
1(g) ∈ SL(2,C), and hence

�1(g) = �∗
1(K

−1gK) = �1(g) (95)

and the matrices �1 and �1 are the same. We are dealing with a-type coirrep. The matrix
N in the transformation �(g) = N�(g)N−1, in (20) is equal to

N =
(

1 0
0 1

)
(96)

The respective a-type coirrep is determined by a single diagonal block of the matrices in (43)
and (44). We will retain the notation D′(g) and D′(a) also for the matrices of the coir-
rep consisting of single blocks, to indicate that these matrices are connected with the basis
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in (47). With N in (96), it follows from (37) that |λ/μ|2 = 1, and hence λ/μ = exp(iξ),
with a real ξ . The factor exp(iξ) can be absorbed by the factor exp(iα0), connected with the
matrices D′(Kg). In the matrix D′(a) = D′(Kg), we therefore can write that λ/μ = 1, and
with � ≡ �1 in (87), from (43) and (44) we obtain the coirrep matrices:

D′(g) = �1(g), D′(gK) = exp(iα0)�1(g), D′(Kg) = exp(iα0)�
∗
1(g) (97)

6.2 The Coirrep of the Group SL(2,C) + �SL(2,C)

We will show that the double-valued irrep SL(2,C) of the group L
↑
+, leads to a double-

valued type-b coirrep of the group L′ = L
↑
+ + �L

↑
+. To this end we will consider the ma-

trix �1 in (87). For the matrix �2 the same conclusions will be valid. We have to answer
the question whether the matrix �1(g) = �∗

1(a
−1
0 ga0) is equivalent or inequivalent to the

matrix �1(g). Let g(A,B,C,D,a, b, c, d) be an element of the group L
↑
+, and �1(g) be

the matrix of the double-valued irrep SL(2,C) of L
↑
+, connected with that group element.

With a0 = �, and �2 = 1, we obtain

�1(a
−1
0 ga0) = �1(�g�) = �1(g

′�2) = �1(g
′), g′ = �g�−1 ∈ L

↑
+ (98)

and hence

�1(g) = �∗
1(a

−1
0 ga0) = �∗

1(g
′) (99)

where the matrix �∗
1(g

′) is obtained from the matrix �1(g), by firstly reversing the signs of
the parameters a, b, c, d , and thus obtaining the matrix �1(g

′), and secondly by taking the
complex conjugate of that matrix. It can be verified that the equivalence condition �1(g) =
N�1(a

−1
0 ga0)N

−1, which turns to: �1(g)N = N�∗
1(g

′), is fulfilled by the matrix:

N =
(

0 −1
1 0

)
(100)

We obtain NN∗ = −E, with E denoting the two-dimensional unit matrix. The same conclu-
sion holds for the irrep �2. We therefore obtain for both matrices �1 and �2, the equality

NN∗ = −E = −�(�2) (101)

Consequently, according to (48), the double-valued coirrep connected with the double-
valued irrep �1 or �2, is of type b.

In order to determine the form of the coirrep matrices we utilize (28) and (49) through
(51), the transformation S1 in (19), with N in (100), we obtain:

exp(iα0)D
′(�) = exp(iα0)

(
0 N

−N 0

)
, D′(g) =

(
�1(g) 0

0 �1(g)

)
(102)

with � = �1, in (87). Hence with a0 = �, and exp(iα0)D
′(�) in (102), for a = a0g = �g,

we find that

eiα0D′(�g) = exp(iα0)D
′(�)D′∗(g) = exp(iα0)

(
0 N�∗

1(g)

−N�∗
1(g) 0

)
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= exp(iα0)

⎛

⎜⎜⎝

0 0 −β∗ + iγ ∗ −δ∗ − iα∗
0 0 δ∗ − iα∗ −β∗ − iγ ∗

β∗ − iγ ∗ δ∗ + iα∗ 0 0
−δ∗ + iα∗ β∗ + iγ ∗ 0 0

⎞

⎟⎟⎠ (103)

with the respective expression for eiα0D′(g�). This seems to be the first known b-type
coirrep of a continuous group with antilinear operations.

7 The Matrix Algebras of the Groups SL(2,C) + a0SL(2,C), with a0 = K,�

7.1 The Group SL(2,C) + KSL(2,C)

The matrix basis elements for the real algebra are calculated from (61) and (62) and (97):

XA =
(

i 0
0 −i

)
= −X′

KA, XB =
(

0 −1
1 0

)
= X′

KB, XC =
(

0 i

i 0

)
= −X′

KC

Xa =
(−1 0

0 1

)
= X′

Ka, Xb =
(

0 −i

i 0

)
= −X′

Kb, Xc =
(

0 −1
−1 0

)
= X′

Kc

X′
K =

(
i 0
0 i

)
(104)

which shows that the matrices X′
j , j = 1, . . . ,6, connected with the coset a0G are linearly

dependent on the matrices Xj , j = 1, . . . ,6, connected with the subgroup G. Consequently,
in the real algebra, the number of basis elements is equal to the number of essential para-
meters. It is seen from (104) that in the respective complex algebra there are only four basis
elements: XA,XB,XC,X′

K .
We observe that the matrices of this complex algebra, which is connected with the group

SU(2,C) + KSU(2,C), are analogous to the matrices of the algebra suL(2) ⊕ u(1), which
appears in the unified theory of weak and electromagnetic interactions [5].

The commutator table of the basis elements of the matrix real algebra of the group
SL(2,C) + KSL(2,C) is given in Table 1.

The basis element X′
K is the center of the algebra. The algebra is not semi-simple. The

structural constants defined in (66), (67) and (68) are determined by Table 1. It can be
verified that they fulfill (69) in Corollary 3.3.

Table 1 The commutator table
of the basis elements of the real
matrix algebra of the group
SL(2,C) + KSL(2,C), with XA

replaced by A, X′
a by a, X′

K
by

K , with analogous abbreviations
for the remaining basis elements

A B C a b c K

A 0 −2C 2B 0 −2c 2b 0

B 2C 0 −2A 2c 0 −2a 0

C −2B 2A 0 −2b 2a 0 0

a 0 −2c 2b 0 2C −2B 0

b 2c 0 −2a −2C 0 2A 0

c −2b 2a 0 2B −2A 0 0

K 0 0 0 0 0 0 0
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7.2 The Group SL(2,C) + �SL(2,C)

The matrix basis elements of the real algebra are calculated from (63), (64), (102) and (103).
We obtain:

XA =

⎛

⎜⎜⎝

i 0 0 0
0 −i 0 0

0 0 i 0
0 0 0 −i

⎞

⎟⎟⎠ , XB =

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0

0 0 0 −1
0 0 1 0

⎞

⎟⎟⎠ , XC =

⎛

⎜⎜⎝

0 i 0 0
i 0 0 0

0 0 0 i

0 0 i 0

⎞

⎟⎟⎠

Xa =

⎛

⎜⎜⎝

−1 0 0 0
0 1 0 0

0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ , Xb =

⎛

⎜⎜⎝

0 −i 0 0
i 0 0 0

0 0 0 −i

0 0 i 0

⎞

⎟⎟⎠ , Xc = −

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0

0 0 0 1
0 0 1 0

⎞

⎟⎟⎠

X′
�A =

⎛

⎜⎜⎝

0 0 0 −i

0 0 −i 0

0 i 0 0
i 0 0 0

⎞

⎟⎟⎠ , X′
�B =

⎛

⎜⎜⎝

0 0 −1 0
0 0 0 −1

1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ , X′
�C =

⎛

⎜⎜⎝

0 0 i 0
0 0 0 −i

−i 0 0 0
0 i 0 0

⎞

⎟⎟⎠

X′
�a =

⎛

⎜⎜⎝

0 0 0 −1
0 0 −1 0

0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ , X′
�b =

⎛

⎜⎜⎝

0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

⎞

⎟⎟⎠ , X′
�c =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞

⎟⎟⎠

X′
� =

⎛

⎜⎜⎝

0 0 0 −i

0 0 i 0

0 i 0 0
−i 0 0 0

⎞

⎟⎟⎠ (105)

When a = ga0 = g�, the matrices X′
a�, X′

b�, X′
c� acquire the opposite sign with respect

to the matrices X′
�a , X′

�b , X′
�c , while the remaining matrices are the same as in (105).

The commutators of the basis elements of the real algebra, given in (105), are presented in
Table 2.

It can be verified that the structural constants which are determined by Table 2, fulfill (69)
in Corollary 3.3. We are dealing with two off-diagonal mutually-commuting matrices X′

�B

and X′
�b = −iX′

�B , which commute with all other matrices in (105). These two matrices
form the center of the real algebra of the group SL(2,C) + �SL(2,C). Consequently, this
algebra is not semi-simple. The matrices X′

�B and X′
�b in (105) can be transformed to a

diagonal form with the help of an appropriate matrix P . They then acquire the form:

X
′
�B = P −1X ′

�BP =

⎛

⎜⎜⎝

i 0 0 0
0 i 0 0

0 0 −i 0
0 0 0 −i

⎞

⎟⎟⎠ (106)

and X
′
�b = −iX

′
�B . It is seen from (105) that the basis of the complex algebra con-

sists of seven matrices: XA,XB,XC,X′
�A,X′

�B,X′
�C,X′

�. The dimension of the com-
plex algebra therefore is equal to the number of the essential parameters of the group
SL(2,C) + �SL(2,C).
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Table 2 The commutator table of the basis elements in (105), which constitute the (2n + 1)-dimensional
basis of the real algebra connected with the group SL(2,C) + �SL(2,C). We have replaced XA by A, X′

�A

by �A, X′
� by �, with analogous symbols for the remaining basis elements

A B C a b c �A �B � C �a � b �c �

A 0 −2C 2B 0 −2c 2b 2i� 0 0 2� 0 0 −2�a

B 2C 0 −2A 2c 0 −2a 2�C 0 −2�A 2�c 0 −2�a 0

C −2B 2A 0 −2b 2a 0 0 0 2i� 0 0 2� −2�c

a 0 −2c 2b 0 2C −2B −2� 0 0 2i� 0 0 −2�A

b 2c 0 −2a −2C 0 2A −2�c 0 2�a 2�C 0 −2�A 0

c −2b 2a 0 2B −2A 0 0 0 −2� 0 0 2i� −2�C

�A −2i� −2�C 0 2� 2�c 0 0 0 −2B 0 0 2b 2a

�B 0 0 0 0 0 0 0 0 0 0 0 0 0

�C 0 2�A −2i� 0 −2�a 2� 2B 0 0 −2b 0 0 2c

�a −2� −2�c 0 −2i� −2�C 0 0 0 2b 0 0 2B 2A

�b 0 0 0 0 0 0 0 0 0 0 0 0 0

�c 0 2�a −2� 0 2�A −2i� −2b 0 0 −2B 0 0 2C

� 2�a 0 2�c 2�A 0 2�C −2a 0 −2c −2A 0 −2C 0

8 Conclusions

Wigner [32] considered the continuous groups G + a0G with a unitary group G and the
antilinear element a0 with a2

0 ∈ G. The matrix algebras with commutator product connected
with those groups were not considered. We have considered the continuous groups G+a0G,
where G is a linear Lie group, which need not be unitary, and a0 is an antilinear operation
which fulfills the condition a2

0 = ±1. The a-type and b-type irreducible corepresentations of
the groups G + a0G were employed for the determination of the respective matrix algebras
with commutator product. Some of the general properties of those algebras were determined.

We have presented the corepresentation theory without the assumption of the unitarity of
the subgroup G of the group G + a0G, where a0 denotes an antilinear operation. This was
done for coirreps of a-type or b-type (types 1 or 2, respectively, in [32]). To the matrices
representing the elements of the coset a0G, an additional parameter α0 is assigned by means
of the equivalence transformation of two coirreps. It then is possible to define the basis ele-
ment X′

0, connected with the matrix eiα0D(a0). This basis element in general is required for
completing the algebra connected with the group G + a0G. There are cases, however, de-
pending on the Lie group G, and on the type of the antilinear element a0, when X′

0 commutes
with the remaining basis elements of the respective algebra. It then is not indispensable for
completing that algebra. The parameter α0 is included into the set of essential parameters
of the group G + a0G in any case. Consequently, all the matrices eiα0D(a0g), with g ∈ G,
belong to an (n + 1)-dimensional parameter space, while the matrices D(g) belong to an
n-dimensional parameter space of the Lie group G.

There appears a characteristic difference between the properties of Lie groups G, and
of groups G + a0G. In Lie groups, when the essential parameters approach zero values,
the representing matrices converge to the unit matrix E. In G + a0G groups, there are two
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points of convergence: the unit matrix E for the Lie group G matrices, and the matrix D(a0)

for the matrices of the coset a0G. In other words, while the local properties of a Lie group
G are connected with a small vicinity of the identity transformation, the local properties of
the group G + a0G are connected with the vicinities of two transformations: the identity
transformation and the transformation connected with the antilinear element a0.

An application of this theory to the unitary groups SU(d), d = 1,2, . . . , showed that the
coirreps of the groups SU(d) + KSU(d) all are of a-type. The respective matrix algebras
differ from the matrix algebras of the groups SU(d) in the presence of the matrix X′

0 = iE,
where E is the d-dimensional unit matrix. The b-type coirrep of the group SL(2,C) +
�SL(2,C), where � is the time-reversal operation, seems to be the first known example
of b-type coirrep of a continuous group with antilinear operations.

Acknowledgements We are very much indebted to Professor Zbigniew Oziewicz from the Universidad
Nacional Autónoma de México for the discussions concerning the mappings with antilinear operations, and
for a critical reading of the paper.
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